# -*- coding: utf-8 -*-
"""Azimuthal average related functions."""
__author__ = "Matteo Levantino"
__contact__ = "matteo.levantino@esrf.fr"
__licence__ = "MIT"
__copyright__ = "ESRF - The European Synchrotron, Grenoble, France"
__date__ = "01/09/2021"
import os
import time
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from scipy import ndimage
from txs.common import tth_to_q, q_to_tth, tth_to_r, r_to_tth
from txs.utils import load_hdf5_as_dict, save_dict_as_hdf5, DETECTORS, processed_data_folder
from txs.datasets import ImageIteratorEDF, ImageIteratorHDF5, load_images
from txs.corr import get_sensor_info, sensor_absorption, sample_transmission
from txs.corr import get_density
plt.ion()
pyfai_methods = ("numpy", "cython", "bbox", "splitpixel", "lut", "csr",
"nosplit_csr", "full_csr", "lut_ocl", "csr_ocl")
CALIBRANTS = ['AgBe']
[docs]
def get_poni(center, pixel, distance, tilt=0, tilt_plane_rotation=0):
"""
Get poni1, poni2, rot1, rot2 and rot3.
Parameters
----------
center: 2D-tuple
X-ray beam position on detector image (pixel).
pixel: 2D-tuple
Detector pixel size (m).
distance: float
Sample to detector distance (m).
tilt: float
Detector tilt (degrees).
tilt_plane_rotation: float
Rotation of the tilt plane around the detector z-axis (degrees)
"""
cos_tilt = np.cos(np.deg2rad(tilt))
sin_tilt = np.sin(np.deg2rad(tilt))
cos_tpr = np.cos(np.deg2rad(tilt_plane_rotation))
sin_tpr = np.sin(np.deg2rad(tilt_plane_rotation))
poni1 = center[0] * pixel[0] - distance * sin_tilt * sin_tpr
poni2 = center[1] * pixel[1] - distance * sin_tilt * cos_tpr
rot2 = np.arcsin(sin_tilt * sin_tpr)
val = cos_tilt / np.sqrt(1.0 - (sin_tpr * sin_tilt)**2)
rot1 = np.arccos(min(1.0, max(-1.0, val)))
if cos_tpr * sin_tilt > 0:
rot1 = -rot1
assert abs(cos_tilt - np.cos(rot1) * np.cos(rot2)) < 1e-6
if tilt == 0.0:
rot3 = 0
else:
val = cos_tilt * cos_tpr - cos_tpr * sin_tpr
val /= np.sqrt(10 - sin_tpr**2 * sin_tilt**2)
rot3 = np.arccos(min(1.0, max(-1.0, val)))
return {'poni1': poni1, 'poni2': poni2, 'rot1': rot1, 'rot2': rot2,
'rot3': rot3}
[docs]
def integrate1d(img, ai, npt=600, method='csr', unit="q_A^-1",
normalization_factor=1.0, mask=None, dark='auto', flat=None,
solid_angle=True, polarization_factor=0.99,
variance=None, error_model=None, radial_range=None,
azimuthal_range=None, dummy=None, delta_dummy=None,
safe=True, metadata=None, dezinger_method='mask_zingers',
dezinger=None, sensor_material=None,
sensor_thickness=None, sensor_density=None,
sample_material=None, sample_thickness=None,
sample_density=None, verbose=False):
"""
Perform azimuthal integration of an image.
Parameters
----------
img : 2d ndarray
Detector Image.
ai : pyFAI.azimuthalIntegrator.AzimuthalIntegrator obj
PyFAI azimuthal integrator.
npt : int, optional
Number of radial bins (number of points in the output pattern).
Default is 600.
method : str, optional
PyFAI azimuthal integration method.
Available choices are (pixel splitting | algorithm | implementation):
"numpy" : no split | histogram | python
"cython" : no split | histogram | cython
"BBox" : bounding box | histogram | cython
"splitpixel" : full | histogram | cython
"lut" : bounding box | look-up table | cython
"csr" : bounding box | compressed sparse row | cython
"nosplit_csr" : no split | compressed sparse row | cython
"full_csr" : full | compressed sparse row | cython
"lut_ocl" : bounding box | look-up table | opencl
"csr_ocl" : bounding box | compressed sparse row | opencl
To specify the device: "csr_ocl_1,2".
No pixel splitting --> high noise on bins with few pixels.
Bounding box splitting --> fast, but blurs a bit the signal.
Pseudo pixel splitting --> compromise between speed and precision.
Full pixel splitting --> slow, high precision.
Default is 'csr'.
unit : str, optional
Output unit. Can be "q_nm^-1", "q_A^-1", "2th_deg", "2th_rad", "r_mm".
Default is "q_A^-1".
normalization_factor : float or None, optional
Value of a normalization monitor.
mask : ndarray or None, optional
Array (same size as image) with 1 for masked pixels, and 0 for valid
pixels. Default is None.
dark : ndarray or str or None, optional
Dark noise image.
If 'auto' (default) and 'ai.detector' is equal to 'rayonix', the
constant offset 10 will be removed from 'img'. Otherwise 'dark' is set
to None.
flat : ndarray of None, optional
Flat field image. Default is None.
solid_angle : bool, optional
If True (default), correct for solid angle of each pixel.
polarization_factor : float or None, optional
Polarization factor between -1 (vertical) and +1 (horizontal).
0 for circular polarization or random,
If None, no correction is applied.
Default is 0.99.
variance : ndarray or None, optional
Array containing the variance of the data in 'img'.
If None (default), no error propagation is done.
error_model : str or None, optional
If "poisson": variance = I.
If "azimuthal": variance = (I-<I>)^2.
Default is None.
radial_range : (float, float) or None, optional
The lower and upper values of the radial unit.
If None (default), range is simply (img.min(), img.max()) and values
outside the range are ignored.
azimuthal_range : (float, float) or None, optional
The lower and upper values of the azimuthal angle.
If None (default), range is simply (img.min(), img.max()) and values
outside the range are ignored.
dummy : ndarray or None, optional
Value for dead/masked pixels.
delta_dummy : ndarray or None, optional
Precision for dummy value.
safe : bool, optional
If True, extra checks are performed to ensure LUT/CSR is valid.
Default is False.
metadata : dict or None, optional
JSON serializable object containing the metadata.
Default is None.
dezinger_method : str, optional
Can be 'medfilt1d' or 'mask_zingers'. Default is 'mask_zingers'.
Ignored if 'dezinger' is None.
dezinger : float or tuple or str or None, optional
- If None (default), no zinger is removed.
- If 'dezinger_method' is 'medfilt1d':
Percentile used for removing pixels corresponding to zingers (or
Bragg peaks) from the amorphous part of the image.
Percentile=90: 90% of pixels are retained.
Avoid using percentile>95.
- If tuple, specifies a region to average out.
- If str, can be only 'mask_zingers' (currently it is the only
implemented alternative to the pyFAI medifilt1() method).
- If 'dezinger_method' is 'mask_zingers':
Must be len=2 tuple. The first element is the pixel intensity
threshold used to detect zingers (40e3 is a good default). The
second element is the radius of the masking circle (5 pixels is
a good default).
sensor_material : str or None, optional
Material of which the detector sensitive area is made of.
Can be expressed as chemical formula or name from materials
list available in the python package 'xraydb'.
If 'auto', the chemical formula and thickness are deduced from
'ai.detector'.
Default is None.
sensor_thickness : float or None, optional
Thickness of the detector sensitive area (m).
Default is None.
If both 'sensor_material' and 'sensor_thickness' are not None,
the azimuthal averaged intensity is scaled (divided) by the
(angular dependent) sensor absorption.
sensor_density : float or None, optional
Density of the detector sensitive area (kg/m3).
If None, the density is guessed automatically.
sample_material : str or None, optional
Material of which the sample is made of.
Can be expressed as chemical formula or name from materials
list available in the python package 'xraydb'.
Default is None.
sample_thickness : float or None, optional
Thickness of the sample (m).
Default is None.
If both 'sample_material' and 'sample_thickness' are not None,
the azimuthal averaged intensity is scaled (divided) by the
(angular dependent) sample transmission.
sensor_density : float or None, optional
Density of the sample (g/cm3).
If None, the density is guessed automatically.
Returns
-------
res : pyFAI.containers.Integrate1dResult obj
Result of PyFAI 1D integration. Attributes include "radial" (center
position of radial bins), "intensity" (azimuthally integrated
intensities) and "sigma" (errors on intensities).
Notes
-----
- To get main results only, it is possible to use:
q, i, e = integrate1d(...)
or even:
q, i = integrate1d(...)
- Property 'zingers' add to 'res': could be None or bool.
"""
if not isinstance(img, np.ndarray):
raise TypeError("'img' must be a numpy array.")
if method not in pyfai_methods:
raise ValueError("'method' must be one of ", pyfai_methods)
kwargs = {'npt': npt, 'filename': None,
'correctSolidAngle': solid_angle, 'variance': variance,
'error_model': error_model, 'radial_range': radial_range,
'azimuth_range': azimuthal_range, 'mask': mask,
'dummy': dummy, 'delta_dummy': delta_dummy,
'polarization_factor': polarization_factor, 'dark': dark,
'flat': flat, 'method': method, 'unit': unit, 'safe': safe,
'normalization_factor': normalization_factor,
'metadata': metadata}
if dark is not None:
if isinstance(dark, str) and dark == 'auto':
if ai.detector == DETECTORS['rayonix']:
kwargs['dark'] = 10 * np.ones_like(img)
else:
kwargs['dark'] = None
if dezinger is None:
if mask is None:
mask = np.zeros_like(img)
res = ai.integrate1d(img, **kwargs)
res.mask = mask
res.zingers = 0
else:
if dezinger_method not in ['medfilt1d', 'mask_zingers']:
raise ValueError("'dezinger_method' must be 'medfilt1d' or " +
"'mask_zingers'.")
if dezinger_method == 'mask_zingers':
if not isinstance(dezinger, (tuple, list)):
raise TypeError("'dezinger' must be tuple when " +
"'dezinger_method' is 'mask_zingers'")
zingers_mask = get_mask_zingers(
img, threshold=dezinger[0], circle_radius=dezinger[1],
verbose=verbose)
if mask is not None:
mask = np.copy(mask | zingers_mask)
else:
mask = np.copy(zingers_mask)
kwargs['mask'] = mask
res = ai.integrate1d(img, **kwargs)
res.mask = mask
res.zingers = zingers_mask.sum()
if dezinger_method == 'medfilt1d':
kwargs = {'npt_rad': npt, 'npt_azim': 512,
'correctSolidAngle': solid_angle,
'mask': mask, 'dummy': dummy, 'delta_dummy': delta_dummy,
'polarization_factor': polarization_factor, 'dark': dark,
'flat': flat, 'method': 'splitpixel', 'unit': unit,
'normalization_factor': normalization_factor,
'metadata': metadata, 'percentile': dezinger}
# Note: for medfilt1d, method="splitpixel" (default) corresponds to
# pseudo split | histogram | cython
res = ai.medfilt1d(img, **kwargs)
res.mask = mask
res.zingers = 0
wl = ai.wavelength
if res.unit.name in ["q_nm^-1", "q_A^-1"]:
res.q = np.copy(res.radial)
q = res.q / res.unit.scale * 1e9
tth = q_to_tth(q, wl)
# tth = 2*np.arcsin(wl*q/(4*np.pi))
res.tth = np.rad2deg(tth)
# res.r_mm = ai.dist*np.tan(tth)*1e3
res.r_mm = tth_to_r(tth, ai.dist) * 1e3
elif res.unit.name in ["2th_deg", "2th_rad"]:
if res.unit == "2th_rad":
tth = np.copy(res.radial)
res.tth = np.rad2deg(tth)
else:
res.tth = np.copy(res.radial)
tth = np.deg2rad(res.tth)
# res.q = 4*np.pi*np.sin(tth/2)/wl
res.q = tth_to_q(tth, wl)
# res.r_mm = ai.dist*np.tan(tth)*1e3
res.r_mm = tth_to_r(tth, ai.dist) * 1e3
elif res.unit.name == "r_mm":
res.r_mm = np.copy(res.radial)
# tth = np.arctan2(res.r_mm*1e-3/ai.dist)
tth = r_to_tth(res.r_mm * 1e-3, ai.dist)
# res.q = 4*np.pi*np.sin(tth/2)/wl
res.q = tth_to_q(tth, wl)
res.tth = np.rad2deg(tth)
else:
raise ValueError("'unit' must be one of 'q_nm^-1', 'q_A^-1', " +
"'2th_deg', '2th_rad', 'r_mm'")
res.i = np.copy(res.intensity)
if error_model is not None:
res.e = np.copy(res.sigma)
else:
res.e = None
res.detector = ai.detector
res.dark = kwargs['dark']
if sensor_material == 'auto' and ai.detector is not None:
sensor_info = get_sensor_info(ai.detector.name)
sensor_material, sensor_thickness, sensor_density = sensor_info
if sensor_material is not None and sensor_thickness is not None:
if sensor_density is None:
sensor_density = get_density(sensor_material)
corr = 1 / sensor_absorption(tth=res.tth,
material=sensor_material,
energy=ai.energy * 1e3,
thickness=sensor_thickness,
density=sensor_density)
res.i *= corr
if res.e is not None:
res.e *= corr
res.sensor_material = sensor_material
res.sensor_thickness = sensor_thickness
res.sensor_density = sensor_density
else:
res.sensor_material = None
res.sensor_thickness = None
res.sensor_density = None
if sample_material is not None and sample_thickness is not None:
if sample_density is None:
sample_density = get_density(sample_material)
corr = 1 / sample_transmission(tth=res.tth,
material=sample_material,
energy=ai.energy * 1e3,
thickness=sample_thickness)
res.i *= corr
if res.e is not None:
res.e *= corr
res.sample_material = sample_material
res.sample_thickness = sample_thickness
res.sample_density = sample_density
else:
res.sample_material = None
res.sample_thickness = None
res.sample_density = None
return res
[docs]
def integrate1d_multi(imgs, ai, npt=600, method='csr', unit="q_A^-1",
normalization_factor=1.0, mask=None, dark='auto',
flat=None, solid_angle=True, polarization_factor=0.99,
variance=None, error_model=None, radial_range=None,
azimuthal_range=None, dummy=None, delta_dummy=None,
safe=True, metadata=None, dezinger_method='mask_zingers',
dezinger=None, sensor_material=None,
sensor_thickness=None, sensor_density=None,
sample_material=None, sample_thickness=None,
sample_density=None, return_info=False,
store_all_masks=False, verbose=True):
"""
Perform the azimuthal integration of a series of images.
Parameters
----------
imgs : list or ndarray
Detector images.
ai : pyFAI.azimuthalIntegrator.AzimuthalIntegrator obj
PyFAI azimuthal integrator.
npt ... dezinger : ...
See 'integrate1d' docinfo.
return_info : bool, optional
If True, all azimuthal average parameters are stored and returned.
store_all_mask : bool, optional
If False (default), only the mask applied to the first image is stored.
If True, a mask is stored for each image. This is useful when
'dezinger' is not None.
Returns
-------
q : list
List of q-vectors.
i : list
List of intensity vectors.
e : list
List of intensity error vectors.
Returned only if 'error_model' is not None.
info : dict
Info on azimuthal average parameters.
Retured only if 'return_info' is True.
"""
if imgs is None:
raise ValueError("'imgs' must be not None.")
elif not isinstance(
imgs, (list, np.ndarray, ImageIteratorEDF, ImageIteratorHDF5)
):
raise TypeError("'imgs' must be list or ndarray.")
kwargs = {'npt': npt, 'method': method, 'unit': unit,
'normalization_factor': normalization_factor,
'mask': mask, 'dark': dark, 'flat': flat,
'solid_angle': solid_angle,
'polarization_factor': polarization_factor,
'variance': variance, 'error_model': error_model,
'radial_range': radial_range, 'azimuthal_range': azimuthal_range,
'dummy': dummy, 'delta_dummy': delta_dummy,
'safe': safe, 'metadata': metadata,
'dezinger_method': dezinger_method, 'dezinger': dezinger,
'sensor_material': sensor_material,
'sensor_thickness': sensor_thickness,
'sample_material': sample_material,
'sample_thickness': sample_thickness,
'sample_density': sample_density,
'verbose': verbose}
t0 = time.time()
if verbose:
print("\nAzimuthally averaging %d images ..." % len(imgs))
# res = [integrate1d(img, ai, **kwargs) for img in tqdm(imgs)]
r0 = integrate1d(imgs[0], ai, **kwargs)
q, i, e = [], [], []
tth, r_mm, zingers = [], [], []
masks = [] # masks are treated separately to reduce memory usage
if not store_all_masks and not error_model:
for img in tqdm(imgs):
r = integrate1d(img, ai, **kwargs)
q.append(r.q)
i.append(r.i)
tth.append(r.tth)
r_mm.append(r.r_mm)
zingers.append(r.zingers)
elif not store_all_masks:
for img in tqdm(imgs):
r = integrate1d(img, ai, **kwargs)
q.append(r.q)
i.append(r.i)
e.append(r.e)
tth.append(r.tth)
r_mm.append(r.r_mm)
zingers.append(r.zingers)
elif not error_model:
for img in tqdm(imgs):
r = integrate1d(img, ai, **kwargs)
q.append(r.q)
i.append(r.i)
tth.append(r.tth)
r_mm.append(r.r_mm)
zingers.append(r.zingers)
masks.append(r.mask)
else:
for img in tqdm(imgs):
r = integrate1d(img, ai, **kwargs)
q.append(r.q)
i.append(r.i)
e.append(r.e)
tth.append(r.tth)
r_mm.append(r.r_mm)
zingers.append(r.zingers)
masks.append(r.mask)
if verbose:
print("Azimuthal averaging time: %.3f s" % (time.time() - t0))
if return_info:
info = kwargs.copy()
# info['init_mask'] = info.pop('mask')
info['tth'] = tth
info['r_mm'] = r_mm
if store_all_masks:
info['masks'] = masks
else:
info['masks'] = np.array([r0.mask])
info['zingers'] = zingers
del info['verbose']
info['detector'] = r0.detector
info['dark'] = r0.dark
# update sensor in case 'auto' option was used
info['sensor_material'] = r0.sensor_material
info['sensor_thickness'] = r0.sensor_thickness
info['sensor_density'] = r0.sensor_density
# update sample_density in case it was initially None
info['sample_density'] = r0.sample_density
if error_model is not None:
return q, i, e, info
else:
return q, i, info
else:
if error_model is not None:
return q, i, e
else:
return q, i
def _compare_ai_res(ai, res):
"""Compare 'ai' and integrate1d_dataset() 'res' for changes."""
has_changes = False
changes = []
if not np.isclose(ai.energy, res['energy'], atol=1e-4):
has_changes = True
changes.append("energy = %.3f keV --> %.3f keV"
% (res['energy'], ai.energy))
if not np.isclose(ai.dist, res['distance'], atol=1e-6):
has_changes = True
changes.append("distance = %.2f mm --> %.2f mm"
% (res['distance'] * 1e3, ai.dist * 1e3))
if ai.detector.name != res['detector']:
has_changes = True
changes.append("detector = %s --> %s"
% (res['detector'], ai.detector.name))
if any(ai.detector.binning != res['binning']):
has_changes = True
changes.append("binning = (%d, %d) --> (%d, %d)"
% (res['binning'][0], res['binning'][1],
ai.detector.binning[0], ai.detector.binning[1]))
if not all(np.isclose(ai.center, res['center'], atol=1e-2)):
has_changes = True
changes.append("center = (%.2f, %.2f) --> (%.2f, %.2f)"
% (res['center'][0], res['center'][1],
ai.center[0], ai.center[1]))
if not np.isclose(ai.poni1, res['poni1'], atol=1e-6):
has_changes = True
changes.append("poni1 = %.2f mm --> %.2f mm"
% (res['poni1'] * 1e3, ai.poni1 * 1e3))
if not np.isclose(ai.poni2, res['poni2'], atol=1e-6):
has_changes = True
changes.append("poni2 = %.2f mm --> %.2f mm"
% (res['poni2'] * 1e3, ai.poni2 * 1e3))
if not np.isclose(ai.rot1, res['rot1'], atol=1e-3):
has_changes = True
changes.append("rot1 = %.2f rad --> %.2f rad"
% (res['rot1'], ai.rot1))
if not np.isclose(ai.rot2, res['rot2'], atol=1e-3):
has_changes = True
changes.append("rot2 = %.2f rad --> %.2f rad"
% (res['rot2'], ai.rot2))
if not np.isclose(ai.rot3, res['rot3'], atol=1e-3):
has_changes = True
changes.append("rot3 = %.2f rad --> %.2f rad"
% (res['rot3'], ai.rot3))
return has_changes, changes
def _compare_kwargs_res(kwargs, res):
"""Compare kwargs and previously stored 'res' for changes."""
has_changes = False
changes = []
exclude_pars = ['verbose', 'dark', 'store_all_masks']
# exclude_pars = ['verbose', 'sensor_material', 'sensor_thickness',
# 'sample_material', 'sample_thickness']
pars = [kw for kw in kwargs if kw not in exclude_pars]
for par in pars:
if par in ['mask', 'dark', 'flat', 'variance', 'dummy', 'delta_dummy',
'metadata', 'sensor_material', 'sensor_thickness',
'sensor_density', 'sample_material', 'sample_thickness',
'sample_density']:
# check if 'h5py._hl.base.Empty'
if hasattr(res[par], 'size'):
if res[par].size is None:
res[par] = None
if par in ['dezinger', 'azimuthal_range', 'radial_range']:
if res[par].size is None:
res[par] = None
elif res[par].size == 1:
res[par] = res[par][0]
elif res[par].size == 2:
res[par] = (res[par][0], res[par][1])
if kwargs[par] is not None and res[par] is None:
has_changes = True
changes.append("%s = None --> %s" % (par, kwargs[par]))
elif kwargs[par] is None and res[par] is not None:
has_changes = True
changes.append("%s = %s --> None" % (par, res[par]))
elif (isinstance(kwargs[par], np.ndarray) and
isinstance(res[par], np.ndarray)):
if not np.array_equal(kwargs[par], res[par]):
has_changes = True
changes.append("%s = %s --> %s" % (par, res[par],
kwargs[par]))
elif kwargs[par] != res[par]:
has_changes = True
changes.append("%s = %s --> %s" % (par, res[par], kwargs[par]))
# check if 'dark' is h5py.Empty
if hasattr(res['dark'], 'size') and res['dark'].size is None:
res['dark'] = None
if (isinstance(kwargs['dark'], str) or
np.any(kwargs['dark'] != res['dark'])):
par = 'dark'
if kwargs['dark'] == 'auto' and res['detector'] == 'Rayonix MX170-HS':
expected_dark = 10 * np.ones(res['image_shape'])
if res['dark'] is not None:
if not np.all(np.isclose(res['dark'], expected_dark)):
has_changes = True
changes.append("%s = %s --> %s" % (par, res[par],
kwargs[par]))
else:
has_changes = True
changes.append("%s = %s --> %s" % (par, res[par], kwargs[par]))
return has_changes, changes
[docs]
def integrate1d_dataset(folder, ai=None, save_fname='id09_azav.h5',
force=False, extension='h5',
npt=600, method='csr', unit="q_A^-1",
normalization_factor=1.0, mask=None, dark='auto',
flat=None, solid_angle=True, polarization_factor=0.99,
variance=None, error_model='poisson',
radial_range=None, azimuthal_range=None, dummy=None,
delta_dummy=None, safe=True, metadata=None,
dezinger_method='mask_zingers', dezinger=None,
sensor_material='auto', sensor_thickness=None,
sensor_density=None, sample_material=None,
sample_thickness=None, sample_density=None,
store_all_masks=False, verbose=True):
"""
Perform azimuthal integration of a dataset and save results.
At difference with 'integrate1d_multi':
- all images are assumed to be in the same folder and have the same format
- results are returned as a single dict 'res'
- res['q'] is a 1D numpy array
- res['i'] is a 2D numpy array
Parameters
----------
folder : str
Dataset path.
ai : pyFAI.azimuthalIntegrator.AzimuthalIntegrator obj or None, optional
PyFAI azimuthal integrator.
mask : ndarray or None, optional
Array (same size as image) with 1 for masked pixels, and 0 for valid
pixels. Default is None.
save_fname : str or None, optional
If not None, the result of the azimuthal integration is saved in the
save folder where the dataset is, with filename 'save_fname'.
Default is 'id09_azav.h5'.
force : bool, optional
If False (default), the azimuthal integration is not performed
and previously saved result (if existing) are returned. If True, or
the file corresponding to 'save_fname' does not exist, the integration
is performed.
npt ... dezinger : ...
See 'integrate1d' docinfo.
store_all_mask : bool, optional
If False (default), only the mask applied to the first image is stored.
If True, a mask is stored for each image. This is useful when
'dezinger' is not None.
Returns
-------
ret : dict
Results dictionary containing: q (1D ndarray), i (2D ndarray),
e (2D ndarray) and info on azimuthal integration.
"""
folder = os.path.abspath(folder)
kwargs = {'npt': npt, 'method': method, 'unit': unit,
'normalization_factor': normalization_factor,
'mask': mask, 'dark': dark, 'flat': flat,
'solid_angle': solid_angle,
'polarization_factor': polarization_factor,
'variance': variance, 'error_model': error_model,
'radial_range': radial_range, 'azimuthal_range': azimuthal_range,
'dummy': dummy, 'delta_dummy': delta_dummy,
'safe': safe, 'metadata': metadata,
'dezinger_method': dezinger_method, 'dezinger': dezinger,
'sensor_material': sensor_material,
'sensor_thickness': sensor_thickness,
'sensor_density': sensor_density,
'sample_material': sample_material,
'sample_thickness': sample_thickness,
'sample_material': sample_material,
'sample_density': sample_density,
'store_all_masks': store_all_masks,
'verbose': verbose}
if save_fname is not None:
if not os.path.isabs(save_fname):
output_folder = processed_data_folder(folder)
if output_folder is None:
output_folder = folder
save_fname = os.path.join(output_folder, save_fname)
if os.path.exists(save_fname) and not force:
if verbose:
print("\nLoading results from previously stored analysis: " +
save_fname)
res = load_hdf5_as_dict(save_fname, verbose=verbose)
if ai is None:
print("WARNING: since 'ai' is None, all the other input " +
"parameters will be ignored.\n")
return res
ai_has_changes, ai_changes = _compare_ai_res(ai, res)
# update folder in case analysis was previously launched from
# different location
res['folder'] = folder
if sensor_material == 'auto':
sensor_info = get_sensor_info(ai.detector.name)
kwargs['sensor_material'] = sensor_info[0]
kwargs['sensor_thickness'] = sensor_info[1]
kwargs['sensor_density'] = sensor_info[2]
if sample_material is not None and sample_thickness is not None:
if sample_density is None:
kwargs['sample_density'] = get_density(sample_material)
pars_have_changes, pars_changes = _compare_kwargs_res(kwargs, res)
if not ai_has_changes and not pars_have_changes:
return res
else:
if ai_has_changes and verbose:
print("\nWARNING: change in ai object\n" +
"\n".join(ai_changes) + "\n")
if pars_have_changes and verbose:
print("\nWARNING: change in integrate1d() parameters\n" +
"\n".join(pars_changes) + "\n")
# re-do analysis
elif ai is None and extension == 'edf':
raise Exception("'ai' must be not None if 'save_fname' is None" +
" or 'force' is True.")
imgs, fnames = load_images(folder, extension=extension, return_fnames=True,
verbose=verbose)
if ai is None and extension == 'h5':
ai = imgs.get_ai()
if len(imgs) == 0:
raise Exception("No images found in 'folder'.")
if error_model is None:
q, i, info = integrate1d_multi(imgs, ai, return_info=True, **kwargs)
q = q[0]
i = np.array(i).T
e = np.zeros_like(i)
else:
q, i, e, info = integrate1d_multi(imgs, ai, return_info=True, **kwargs)
q = q[0]
i = np.array(i).T
e = np.array(e).T
# format results
res = info.copy()
res['q'], res['i'], res['e'] = q, i, e
res['tth'] = res['tth'][0]
res['r_mm'] = res['r_mm'][0]
res['folder'] = folder
res['fnames'] = fnames
# store ai info
res['pixel'] = (ai.pixel1, ai.pixel2)
res['tilt'] = ai.tilt[0]
res['tilt_plane_rotation'] = ai.tilt[1]
res['distance'] = ai.dist
ai_dict = ai.as_dict()
for k in ['energy', 'wavelength', 'center', 'detector', 'binning',
'poni1', 'poni2', 'rot1', 'rot2', 'rot3', 'spline']:
res[k] = ai_dict[k]
res['image_shape'] = ai.detector.shape
if save_fname is not None:
if verbose:
print("\nSaving azimuthal average results...")
# save_dict_as_hdf5(res, save_fname, verbose=verbose)
create_dataset_args = {'compression': 'gzip', 'compression_opts': 9}
save_dict_as_hdf5(res, save_fname,
create_dataset_args=create_dataset_args,
verbose=verbose)
return res
[docs]
def get_mask_from_limits(img, mask_lim, invert=False):
"""
Get mask on the basis of a range defining tuple.
Parameters
----------
img : array_like
Image to be analyzed.
mask_lim : tuple or list
Pixels with intensity < mask_lim[0] or > mask_lim[1] will be
True in the mask.
invert : bool
If True, 'mask' is inverted. Default is False
Returns
-------
mask : numpy array
Image mask.
"""
if mask_lim is None:
return None
if not isinstance(mask_lim, (tuple, list)):
raise TypeError("'mask_lim' must be tuple or list.")
img = np.array(img)
if mask_lim[0] is None and mask_lim[1] is None:
return None
elif mask_lim[0] is None and mask_lim[1] is not None:
mask = (img > mask_lim[1])
elif mask_lim[1] is None and mask_lim[0] is not None:
mask = (img < mask_lim[0])
else:
mask = (img < mask_lim[0]) | (img > mask_lim[1])
if invert:
mask = ~mask
return mask
[docs]
def get_zingers(img, threshold=2e4, plot=True, clim="auto", verbose=True):
"""
Find clusters of pixels with intensity >= threshold.
The center-of-mass of the clustered is returned.
Parameters
----------
img: numpy array
image to be analyzed
threshold: float
pixel intensity threshold
plot: bool
if True, a red circle is plot around each cluster
clim: str or tuple
imshow clim, if "auto", clim=(0,threshold)
verbose: bool
if True, information on results are printed out
Returns
-------
cluster_xy: list
list of clusters center-of-mass
"""
if plot:
fig, ax = plt.subplots()
if clim == "auto":
ax.imshow(img, origin='lower', clim=(0, threshold))
else:
ax.imshow(img, origin='lower', clim=clim)
mask = (img >= threshold)
npxl = np.sum(mask)
lw, num = ndimage.label(img * mask)
if verbose:
print("There are %d pixel(s) with intensity >= %d."
% (npxl, threshold))
if npxl == 0:
return []
if verbose:
print("They are clustered in %d zinger(s).\n" % num +
"Their center-of-mass is:")
cluster_xy = []
for k in range(num):
yc, xc = ndimage.measurements.center_of_mass(img, lw, k+1)
if verbose:
print(xc, yc)
cluster_xy.append((xc, yc))
if plot:
# plt.scatter(xc, yc, s=100, facecolors='none', edgecolor='red')
circle = plt.Circle((xc, yc), 20, edgecolor='red', fill=False)
ax.add_patch(circle)
return cluster_xy
[docs]
def get_mask_circle(img, radius, center=None):
"""
Return an image with a masked circle.
Parameters
----------
img: numpy array
Input image.
radius: float
Circle radius (in pixels).
center: tuple
Center coordinates (x,y) (in pixels).
If None, center=(nrows/2,ncols/2).
Returns
-------
mask: numpy array
image mask
"""
# get radius
nrows, ncols = np.shape(img)
if center is None:
xc, yc = int(nrows/2), int(ncols/2)
else:
xc, yc = center
if (xc < 0) or (xc > nrows):
raise ValueError("Center x-coordinate outside available range.")
if (yc < 0) or (yc > ncols):
raise ValueError("Center y-coordinate outside available range.")
y, x = np.ogrid[:nrows, :ncols] # create meshgrid
img_radius = np.sqrt((x-xc)**2 + (y-yc)**2)
mask = (img_radius <= radius)
return mask
[docs]
def get_mask_zingers(img, threshold=2e4, circle_radius=5., verbose=False):
"""
Returns a mask of the input image where pixels corresponding to
zingers are masked with circles.
Zingers are clustered pixels with intensity >= threshold.
Parameters
----------
img: numpy array
Input image.
threshold: float
Pixel intensity threshold.
circle_radius: float
Radius of circles used to mask zingers.
verbose: bool
If True, information on zingers detection is printed out.
Returns
-------
mask: numpy array
image mask
"""
zingers = get_zingers(img, threshold=threshold, plot=False,
verbose=verbose)
mask = np.array(np.zeros(np.shape(img)), dtype=bool)
if len(zingers) == 0:
return mask
# create a circle mask for every zinger
for center in zingers:
submask = get_mask_circle(img, radius=circle_radius, center=center)
mask = mask | submask
return mask